A role of HNO3 on transparent conducting film with single-walled carbon nanotubes.

نویسندگان

  • Dong-Wook Shin
  • Jong Hak Lee
  • Yu-Hee Kim
  • Seong Man Yu
  • Seong-Yong Park
  • Ji-Beom Yoo
چکیده

There is some controversy regarding the effects of HNO3 on films of single-walled carbon nanotubes (SWCNTs). In this study we examined the change in sheet resistance of an HNO3-modified SWCNT film after different drying times at 85 degrees C using various analytical techniques. The shift and suppression in the Raman spectra, bleaching of the transition peaks related to van Hove singularities and a shift in the original peak in the C 1s XPS spectra provided evidence for p-type doping. A decrease in sheet resistance was also observed in the SWCNTs films due to the removal of residual N-methylpyrrolidone solvent on the surface and bundle of SWCNTs. These results suggest that p-type doping has a larger effect on the sheet resistance than the removal of residual N-methylpyrrolidone by an HNO3 treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes.

This paper reports a mechanically flexible, transparent thin film transistor that uses graphene as a conducting electrode and single-walled carbon nanotubes (SWNTs) as a semiconducting channel. These SWNTs and graphene films were printed on flexible plastic substrates using a printing method. The resulting devices exhibited a mobility of ∼ 2 cm(2) V(-1) s -1), On/Off ratio of ∼ 10(2), transmitt...

متن کامل

Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets.

Utilizing aligned carbon nanotube arrays grown from chemical vapor deposition, we present a highly scalable route toward the formation of ribbons and ultrathin transparent films directly from vertically aligned single-walled carbon nanotube arrays (SWNT carpets). To "lay-over" the aligned nanotubes to form a film, we use a roller which acts to compress the film and preserve the alignment of nan...

متن کامل

Dispersion and characterization of arc discharge single-walled carbon nanotubes--towards conducting transparent films.

This study addresses a combination of a well-developed and mild dispersion method and high-quality arc discharge single-walled carbon nanotubes (SWCNTs) as starting materials. Thus, we advance in fabrication of transparent, conducting films with extraordinary low material loss during SWCNT processing. The starting material was characterized by means of thermogravimetric analysis, high-resolutio...

متن کامل

Fabrication of flexible transparent conductive films from long double-walled carbon nanotubes

The fabrication of flexible transparent conducting films (TCFs) is important for the development of the next-generation flexible devices. In this study, we used double-walled carbon nanotubes (DWCNTs) as the starting material and described a fabrication method of flexible TCFs. We have determined in a quantitative way that the key factors are the length and the dispersion states of the DWCNTs a...

متن کامل

Optical anisotropy in single-walled carbon nanotube thin films: implications for transparent and conducting electrodes in organic photovoltaics.

Optical anisotropy in single-walled carbon nanotube thin film networks is reported. We obtain the real and imaginary parts of the in-(parallel) and out-of-plane (perpendicular) complex dielectric functions of the single-walled carbon nanotube (SWNT) thin films by combining transmission measurements at several incidence angles with spectroscopic ellipsometry data on different substrates. In spar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 47  شماره 

صفحات  -

تاریخ انتشار 2009